Skip to main content

Describing TOAD - TripleO automated deployer

An overview of the TOAD framework and the advantages

What is TOAD?

What components make up TOAD?

Requirements to install TOAD

  • Two different use cases: virtualized and baremetal
  • Only one Jenkins+Nginx VM needed to spin up the platform (8gb at least) 
  • RHEL7 / Centos7 operating system

Virtualized deploys

  • One server for slave and virtualized TripleO deployment:
    • multi-core
    • 16GB mem (better 32GB)
    • 60GB disk
    • external network
  • Needs RHN subscription for OSP jobs.

Baremetal deploys

  • One server for slave and virtualized undercloud:
    • multi-core
    • 16GB mem
    • 60GB disk
    • external network
    • Needs RHN subscription for OSP jobs.
  • One server for controller and one for compute:
    • multi-core
    • 4GB memory
    • 60GB disk
    • IPMI support
    • independent NIC/VLANS for provisioning and administration.
Can be extended with more controller and computes for HA

How users benefit from TOAD?

  • Easy: perform full virtualized and baremetal deployments with one click
  • Automated: avoid manual steps that are prone to human errors
  • Repeatable: job definitions and configs stored in git repos, track changes
  • Battle tested: relies on TripleO quickstart, used for upstream CI
  • Complete: choose between different releases, and RDO/OSP deploys
  • Flexible: extend with customization scripts and templates. Consume local repos with pinned versions and custom packages
  • Visible: logs for all deployment steps are collected and published 

TOAD job deployment workflow 

Comments

  1. Nice blog... This blog is helpful for me to understand OpenStack development. Thanks for sharing information

    ReplyDelete

Post a Comment

Popular posts from this blog

Start using whole disk images with TripleO

What are the differences between flat partition image and whole disk image? In order to understand this article, you first need to know what a flat partition image and a whole disk image are, and the differences between each other.
flat partition image: disk image that just contains all the desired content in a filesystem, but does not carry any information about partitions on it, and it does not include a bootloader. In order to boot from a whole disk image, the kernel and ramdisk images need to be passed independently when booting, relying on an external system to mount.whole disk image: image that contains all the information about partitions, bootloaders... as well as all the desired content. It can boot independently, without the need of external kernels or systems to mount it. Right now, OpenStack Ironic  supports both kind of images, but OpenStack TripleO was only supporting flat partition images.

TripleO added support for whole disk images Since python-tripleoclient 5.6.0 ver…

Automated OSP deployments with Tripleo Quickstart

In this article I'm going to show a method for automating OSP (RedHat OpenStack platform) deployments. These automated deployments can be very useful for CI, or simply to experiment and test with the system.
Components involvedTOAD: set of playbooks to deploy Jenkins, jenkins-job-builder and an optional ELK stack. This will install a ready to use system with all the preconfigured jobs (including OSP10 deployments and image building).TOAD jenkins-jobs: A set of job templates and macros, using jenkins-job-builder syntax, that get converted into Jenkins jobs for building the OSP base images and for deploying the system.TOAD job-configs: A set of job configurations to be used along with the jenkins-jobs repo. It provides a set of basic configs to build OpenStack using RDO or OSP.TripleO quickstart: set of ansible playbooks, used for building images and for RDO/OSP deployments. System requirementsOne VM to run a Jenkins master + nginx provided by TOAD. If you want to deploy additiona…